Bài viết trình bày lý thuyết cũng như phương pháp viết biểu thức u và i theo các bước rất chi tiết. Đồng thời giới thiệu một số bài tập có hướng dẫn giải giúp các em củng cố kiến thức.

Bạn đang xem: Biểu thức cường độ dòng điện


VIẾT BIỂU THỨC CỦA u HOẶC i 

I.ĐOẠN MẠCH CHỈ CÓ 1 PHẦN TỬ:

a) Đoạn mạch chỉ có điện trở thuần:

uR cùng pha với i : I = \(\frac{U_{R}}{R}\)

b) Đoạn mạch chỉ có tụ điện C:

*
 

uC trễ pha so với i góc \(\frac{\pi }{2}\).

- ĐL ôm: I = \(\frac{U_{C}}{Z_{C}}\) ; với ZC = \(\frac{1}{\omega C}\) là dung kháng của tụ điện.

-Đặt điện áp \(u=U\sqrt{2}cos\omega t\) vào hai đầu một tụ điện thì cường độ dòng điện qua nó có giá trị hiệu dụng là I. Tại thời điểm t, điện áp ở hai đầu tụ điện là u và cường độ dòng điện qua nó là i. Hệ thức liên hệ giữa các đại lượng là :

Ta có:\({\left( {{i \over {{I_0}}}} \right)^2} + {\left( {{u \over {{U_{0C}}}}} \right)^2} = 1 \Leftrightarrow {\rm{ }}{{{i^2}} \over {2{I^2}}}{\rm{ }} + {{{u^2}} \over {2{U_C}^2}} = 1 \Rightarrow {{{u^2}} \over {{U^2}}} + {{{i^2}} \over {{I^2}}} = 2\)

-Cường độ dòng điện tức thời qua tụ: \(i=I\sqrt{2}cos(\omega t+\frac{\pi }{2})\)

c) Đoạn mạch chỉ có cuộn dây thuần cảm L:

 

*

uL sớm pha hơn i góc \(\frac{\pi }{2}\) .

- ĐL ôm: I = \(\frac{U_{L}}{Z_{L}}\); với ZL = ωL là cảm kháng của cuộn dây.

-Đặt điện áp \(u=U\sqrt{2}cos\omega t\) vào hai đầu một cuộn cảm thuần thì cường độ dòng điện qua nó có giá

trị hiệu dụng là I. Tại thời điểm t, điện áp ở hai đầu cuộn cảm thuần là u và cường độ dòng điện

qua nó là i. Hệ thức liên hệ giữa các đại lượng là :

Ta có: \({\left( {{i \over {{I_0}}}} \right)^2} + {\left( {{u \over {{U_{0L}}}}} \right)^2} = 1 \Leftrightarrow {{{i^2}} \over {2{I^2}}}{\rm{ }} + {{{u^2}} \over {2{U_L}^2}} = 1 \Rightarrow {{{u^2}} \over {{U^2}}} + {{{i^2}} \over {{I^2}}} = 2\)


-Cường độ dòng điện tức thời qua cuộn dây:\(i=I\sqrt{2}cos(\omega t-\frac{\pi }{2})\)

d) Đoạn mạch có R, L, C không phân nhánh:

*

+Đặt điện áp \(u=U\sqrt{2}cos(\omega t +\varphi _{u})\) vào hai đầu mạch

+ Độ lệch pha φ giữa u và i xác định theo biểu thức: 

\(tan\varphi =\frac{Z_{L}-Z_{C}}{R}=\frac{\omega L-\frac{1}{\omega C}}{R}\); Với \(\varphi =\varphi _{u}-\varphi _{i}\)

+ Cường độ hiệu dụng xác định theo định luật Ôm: I = \(\frac{U}{Z}\).

Với Z = \(\sqrt{R^{2}+(Z_{L}-Z_{C})^{2}}\) là tổng trở của đoạn mạch.

Cường độ dòng điện tức thời qua mạch: \(i=I\sqrt{2}cos(\omega t+\varphi _{i})=I\sqrt{2}cos(\omega t+\varphi _{u}-\varphi )\)

+ Cộng hưởng điện trong đoạn mạch RLC: Khi ZL = ZC hay \(\omega =\frac{1}{\sqrt{LC}}\) thì

Imax = \(\frac{U}{R},P_{max}=\frac{U^{2}}{R}\) , Pmax = , u cùng pha với i (φ = 0).

Khi ZL > ZC  thì u nhanh pha hơn i (đoạn mạch có tính cảm kháng).

Khi ZL C  thì u trể pha hơn i (đoạn mạch có tính dung kháng).

R tiêu thụ năng lượng dưới dạng toả nhiệt, ZL và ZC không tiêu thụ năng lượng điện.


 e) Đoạn mạch có R, L,r, C không phân nhánh:

*

 +Đặt điện áp \(u=U\sqrt{2}cos(\omega t +\varphi _{u})\) vào hai đầu mạch

+ Độ lệch pha φ giữa u và i xác định theo biểu thức: 

\(tan\varphi =\frac{Z_{L}-Z_{C}}{R}=\frac{\omega L-\frac{1}{\omega C}}{R}\); Với \(\varphi =\varphi _{u}-\varphi _{i}\)

+ Cường độ hiệu dụng xác định theo định luật Ôm: I = \(\frac{U}{Z}\).

Với Z = \(\sqrt{R^{2}+(Z_{L}-Z_{C})^{2}}\) là tổng trở của đoạn mạch.

Cường độ dòng điện tức thời qua mạch: \(i=I\sqrt{2}cos(\omega t+\varphi _{i})=I\sqrt{2}cos(\omega t+\varphi _{u}-\varphi )\)

+ Cách nhận biết cuộn dây có điện trở thuần r

-Xét toàn mạch, nếu: \(Z\neq \sqrt{R^{2}+(Z_{L}-Z_{C})^{2}};U\neq \sqrt{U_{R}^{2}+(U_{L}-U_{C})^{2}}\)

hoặc P ≠ I2R hoặc cosφ ≠ \(\frac{R}{Z}\)

à thì cuộn dây có điện trở thuần r ≠ 0.

-Xét cuộn dây, nếu: Ud ≠ UL hoặc Zd ≠ ZL hoặc Pd  ≠ 0 hoặc cosφd ≠ 0 hoặc φd ≠ \(\frac{\pi }{2}\)

=> thì cuộn dây có điện trở thuần r ≠ 0.

II. PHƯƠNG PHÁP 1: (PHƯƠNG PHÁP TRUYỀN THỐNG):


a) Mạch điện chỉ chứa một phần tử ( hoặc R, hoặc L, hoặc C)

- Mạch điện chỉ có điện trở thuần: u và i cùng pha: φ =φu - φi = 0 Hay φu = φi

+ Ta có: \(i=I\sqrt{2}cos(\omega t+\varphi _{i})\) thì \(u=U_{R}\sqrt{2}cos(\omega t+\varphi )\) ; với \(I=\frac{U_{R}}{R}\).

+Ví dụ 1: Điện áp giữa hai đầu một đoạn mạch điện xoay chiều chỉ có điện trở thuần R= 100Ω có biểu thức u= \(200\sqrt{2}cos(100\pi t+\frac{\pi }{4})(V)\). Biểu thức của cường độ dòng điện trong mạch là : 

A. i=\(2\sqrt{2}cos(100\pi t-\frac{\pi }{4})(A)\) C.i=\(2\sqrt{2}cos(100\pi + \frac{\pi }{4})(A)\)

B. i=\(2\sqrt{2}cos(100\pi t+\frac{\pi }{2})(A)\) D.i=\(2cos(100\pi t-\frac{\pi }{2})(A)\)

+Giải :Tính I0 hoặc I= U /.R =200/100 =2A; i cùng pha với u hai đầu R, nên ta có:φi = φu = π/4

Suy ra: i = \(2\sqrt{2}cos(100\pi + \frac{\pi }{4})(A)\)

=> Chọn C

 -Mạch điện chỉ có tụ điện:

uC trễ pha so với i góc \(\frac{\pi }{2}\) . -> φ= φu - φi =- \(\frac{\pi }{2}\) Hay φu = φi - \(\frac{\pi }{2}\) ; φi = φu +\(\frac{\pi }{2}\)


+Nếu đề cho \(i=I\sqrt{2}cos(\omega t)\) thì viết: \(u=U\sqrt{2}cos(100\pi t-\frac{\pi }{2})(A)\) và ĐL Ôm:\(I=\frac{U_{C}}{Z_{C}}\) với \(Z_{C}=\frac{1}{\omega C}\)

+Nếu đề cho \(u=U\sqrt{2}cos(\omega t)\) thì viết: \(i=I\sqrt{2}cos(100\pi t+\frac{\pi }{2})(A)\)

+Ví dụ 2: Điện áp giữa hai đầu một đoạn mạch điện xoay chiều chỉ có tụ có điện dung C= \(\frac{10^{-4}}{\pi }(F)\) có biểu thức u=\(200\sqrt{2}cos(100\pi t)(V)\). Biểu thức của cường độ dòng điện trong mạch là :

A. i= \(2\sqrt{2}cos(100\pi t+\frac{5\pi }{6})(A)\) C.i=\(2\sqrt{2}cos(100\pi t+\frac{\pi }{2})(A)\)

B. i= \(2\sqrt{2}cos(100\pi t-\frac{\pi }{2})(A)\) D.i=\(2cos(100\pi t-\frac{\pi }{6})(A)\)

Giải :  Tính \(Z_{C}=\frac{1}{\omega C}=100\Omega\) , Tính Io hoặc I= U /.ZL =200/100 =2A;

i sớm pha góc π/2 so với u hai đầu tụ điện; Suy ra: i=\(2\sqrt{2}cos(100\pi t+\frac{\pi }{2})(A)\) 

=> Chọn C

-Mạch điện chỉ có cuộn cảm thuần:

uL sớm pha hơn i góc  \(\frac{\pi }{2}\) . -> φ= φu - φi =- \(\frac{\pi }{2}\) Hay φ= φi + \(\frac{\pi }{2}\) ; φ= φu - \(\frac{\pi }{2}\)


+Nếu đề cho \(i=I\sqrt{2}cos(\omega t)\) thì viết: \(u=U\sqrt{2}cos(100\pi t+\frac{\pi }{2})(A)\) và ĐL Ôm: \(I=\frac{U_{L}}{Z_{L}}\) với \(Z_{L}=\omega L\)

Nếu đề cho \(u=U\sqrt{2}cos(\omega t)\) thì viết: \(i=I\sqrt{2}cos(100\pi t-\frac{\pi }{2})(A)\)

 Ví dụ 3: Hiệu điện thế giữa hai đầu một đoạn mạch điện xoay chiều chỉ có cuộn cảm có độ tự cảm L= \(\frac{1}{\pi }(H)\) có biểu thức u=\(200\sqrt{2}cos(100\pi t+\frac{\pi }{3})(V)\). Biểu thức cường độ dòng điện trong mạch là :

A. i= \(2\sqrt{2}cos(100\pi t+\frac{5\pi }{6})(A)\) C.i=\(2\sqrt{2}cos(100\pi t-\frac{\pi }{6})(A)\)

B. i=\(2\sqrt{2}cos(100\pi t+\frac{\pi }{6})(A)\) D.i=\(2cos(100\pi t-\frac{\pi }{6})(A)\)

Giải :  Tính \(Z_{L}=\omega L\) = 100π.1/π =100Ω, Tính I0 hoặc I= U /.ZL =200/100 =2A;

i trễ pha góc π/2 so với u hai đầu cuộn cảm thuần, nên ta có: \(\frac{\pi }{3}-\frac{\pi }{2}=-\frac{\pi }{6}\)

Suy ra: i = \(2\sqrt{2}cos(100\pi t-\frac{\pi }{6})(A)\)


=> Chọn C

II.MẠCH ĐIỆN KHÔNG PHÂN NHÁNH (R L C)

a. Phương pháp truyền thống):

-Phương pháp giải: Tìm Z, I ( hoặc I0 )và φ 

 Bước 1: Tính tổng trở Z: Tính \(Z_{L}=\omega L\) ; \(Z_{C}=\frac{1}{\omega C}=\frac{1}{2\pi fC}\) và \(Z=\sqrt{R^{2}+(Z_{L}-Z_{C})^{2}}\)

Bước 2: Định luật Ôm : U và I liên hệ với nhau bởi ; I= \(\frac{U}{Z}\) Io = \(\frac{U_{0}}{Z}\);

 Bước 3: Tính độ lệch pha giữa u hai đầu mạch và i: \(tan\varphi =\frac{Z_{L}-Z_{C}}{R}\); 

 Bước 4: Viết biểu thức u hoặc i

-Nếu cho trước:\(i=I\sqrt{2}cos(\omega t)\) thì biểu thức của u là \(u=U\sqrt{2}cos(\omega t+\varphi )\)

Hay i = Iocosωt thì u = Uocos(ωt + φ).

-Nếu cho trước: \(u=U\sqrt{2}cos(\omega t)\) thì biểu thức của i là: \(i=I\sqrt{2}cos(\omega t-\varphi )\)

Hay u = Uocosωt thì i = Iocos(ωt - φ)

* Khi: (φu ≠ 0; φ i ≠ 0 ) Ta có : φ = φu - φ i => φu = φi + φ ; φi = φu - φ


-Nếu cho trước \(i=I\sqrt{2}cos(\omega t+\varphi_{i} )\) thì biểu thức của u là: \(u=U\sqrt{2}cos(\omega t+\varphi_{i} +\varphi )\)

Hay i = Iocos(ωt + φi) thì u = Uocos(ωt + φi + φ).

-Nếu cho trước \(u=U\sqrt{2}cos(\omega t+\varphi_{u} )\)thì biểu thức của i là: \(i=I\sqrt{2}cos(\omega t+\varphi_{u}-\varphi )\)

Hay u = Uocos(ωt +φu) thì i = Iocos(ωt +φu - φ)

Lưu ý: Với Mạch điện không phân nhánh có cuộn dây không cảm thuần (R ,L,r, C) thì:

Tổng trở :\(Z=\sqrt{(R+r)^{2}+(Z_{L}-Z_{C})^{2}}\) và \(tan\varphi =\frac{Z_{L}-Z_{C}}{R+r}\);

Ví dụ 1: Mạch điện xoay chiều gồm một điện trở thuần R = 50Ω, một cuộn thuần cảm có hệ số tự cảm \(L=\frac{1}{\pi }(H)\) và một tụ điện có điện dung \(C=\frac{2.10^{-4}}{\pi }(F)\) mắc nối tiếp. Biết rằng dòng điện qua mạch có dạng \(i=5cos100\pi t(A)\) .Viết biểu thức điện áp tức thời giữa hai đầu mạch điện.

Giải :

 Bước 1: Cảm kháng: \(Z_{L}=\omega L=100\pi .\frac{1}{\pi }=100\Omega ;\); Dung kháng: \(Z_{C}=\frac{1}{\omega C}=\frac{1}{100\pi .\frac{2.10^{-4}}{\pi }}=50\Omega\)


Tổng trở: \(Z=\sqrt{R^{2}+(Z_{L}-Z_{C})^{2}}=\sqrt{50^{2}+(100-50)^{2}}=50\sqrt{2}\Omega\)

Bước 2: Định luật Ôm : Với Uo= IoZ = 5.50\(\sqrt{2}\) = 250\(\sqrt{2}\)V;

Bước 3: Tính độ lệch pha giữa u hai đầu mạch và i: \(tan\varphi =\frac{Z_{L}-Z_{C}}{R}=\frac{100-50}{50}=1\Rightarrow \varphi =\frac{\pi }{4}\)(rad).

Bước 4: Biểu thức điện áp tức thời giữa hai đầu mạch điện: \(u=250\sqrt{2}cos(100\pi t+\frac{\pi }{4})(V)\)(V).

b.PHƯƠNG PHÁP DÙNG SỐ PHỨC TÌM BIỂU THỨC i HOẶC u

VỚI MÁY CASIO FX-570ES; FX-570ES PLUS;VINACAL-570ES PLUS .

 (NHANH VÀ HIỆU QUẢ CHO TRẮC NGHIỆM)

1.Tìm hiểu các đại lượng xoay chiều dạng phức: Xem bảng liên hệ 

*

Chú ý: \(\bar{Z}=R+(Z_{L}-Z_{C})i\)( tổng trở phức \(\bar{Z}\) có gạch trên đầu: R là phần thực, (ZL -ZC ) là phần ảo)

 Cần phân biệt chữ i sau giá trị b = (ZL -ZC ) là phần ảo , khác với chữ i là cường độ dòng điện

2.Chọn cài dặt  máy tính: CASIO fx – 570ES ; 570ES Plus

*

3.Lưu ý Chế độ hiển thị kết quả trên màn hình:

*

Sau khi nhập, ấn dấu = có thể hiển thị kết quả dưới dạng số vô tỉ,


muốn kết quả dưới dạng thập phân ta ấn SHIFT =

( hoặc nhấn phím SD ) để chuyển đổi kết quả Hiển thị.

4. Các Ví dụ 1:

Ví dụ 1: Mạch điện xoay chiều gồm một điện trở thuần R = 50Ω, một cuộn thuần cảm có hệ số tự cảm \(L=\frac{1}{\pi }(H)\) và một tụ điện có điện dung \(C=\frac{2.10^{-4}}{\pi }(F)\) mắc nối tiếp. Biết rằng dòng điện qua mạch có dạng \(i=5cos100\pi t(A)\) .Viết biểu thức điện áp tức thời giữa hai đầu mạch điện.

Giải : \(Z_{L}=\omega L=100\pi .\frac{1}{\pi }=100\Omega ;Z_{C}=\frac{1}{\omega C}=...=50\Omega\) Và ZL-ZC =50Ω

-Với máy FX570ES : Bấm MODE 2 màn hình xuất hiện: CMPLX.

 -Bấm SHIFT MODE ‚ 3 2 : dạng hiển thị toạ độ cực:( r\(\angle\)\(\Theta\) )

 -Chọn đơn vị đo góc là độ (D), bấm: SHIFT MODE 3  màn hình hiển thị D

Ta có :\(u=i.\bar{Z}=I_{0}\angle \varphi _{i}X(R+(Z_{L}-Z_{C}))i=5\angle 0X(50+50i)\) ( Phép NHÂN hai số phức)

Nhập máy: 5 SHIFT (-) 0 X ( 50 + 50  ENG i ) = Hiển thị: 353.55339\(\angle\)45 = 250\(\sqrt{2}\)\(\angle\)45

 Vậy biểu thức tức thời điện áp của hai đầu mạch:


 u = 250\(\sqrt{2}\) cos( 100πt +π/4) (V).

Ví dụ 2: Một mạch điện xoay chiều RLC không phân nhánh có R = 100Ω; \(C=\frac{1}{\pi }.10^{-4}F;L=\frac{2}{\pi }H\). Cường độ dòng điện qua mạch có dạng: i = 2\(\sqrt{2}\)cos100πt(A). Viết biểu thức điện áp tức thời của hai đầu mạch?

Giải: . \(Z_{L}=\omega L=100\pi .\frac{2}{\pi }=200\Omega ;Z_{C}=\frac{1}{\omega C}=...=100\Omega\)Và ZL-ZC =100Ω

 -Với máy FX570ES : Bấm MODE 2 màn hình xuất hiện: CMPLX.

 -Bấm SHIFT MODE ‚ 3 2 : Cài đặt dạng toạ độ cực:( r\(\angle\)\(\Theta\) )

 -Chọn đơn vị đo góc là độ (D), bấm: SHIFT MODE 3  màn hình hiển thị D

Ta có : \(u=i.\bar{Z}=I_{0}\angle \varphi _{i}X(R+(Z_{L}-Z_{C}))i=2\sqrt{2}\angle 0X(100+100i)\) ( Phép NHÂN hai số phức)

Nhập máy: 2\(\sqrt{2}\) \(\triangleright\) SHIFT (-) 0 X ( 100 + 100  ENG i ) = Hiển thị: 400\(\angle\)45

 Vậy biểu thức tức thời điện áp của hai đầu mạch: u = 400cos( 100πt +π/4) (V).

Ví dụ 3: Cho đoạn mạch xoay chiều có R=40Ω, \(L=\frac{1}{\pi }(H),C=\frac{10^{-4}}{0,6\pi }(F)\), mắc nối tiếp điện áp 2 đầu mạch u=100\(\sqrt{2}\)cos100πt (V), Cường độ dòng điện qua mạch là:


A.\(i=2,5cos(100\pi t+\frac{\pi }{4})(A)\) B.\(i=2,5cos(100\pi t-\frac{\pi }{4})(A)\)

C.\(i=2cos(100\pi t-\frac{\pi }{4})(A)\) C.\(i=2cos(100\pi t+\frac{\pi }{4})(A)\)

Giải: \(Z_{L}=\omega L=100\pi .\frac{1}{\pi }=100\Omega ;Z_{C}=\frac{1}{\omega C}=\frac{1}{100\pi .\frac{10^{-4}}{0,6\pi }}=60\Omega\). Và ZL-ZC =40Ω

-Với máy FX570ES : Bấm MODE 2 màn hình xuất hiện: CMPLX.

-Bấm SHIFT MODE ‚ 3 2 : Cài đặt dạng toạ độ cực:( r\(\angle\)\(\Theta\)  )

 -Chọn đơn vị đo góc là độ (D), bấm: SHIFT MODE 3  màn hình hiển thị D

Ta có : \(i=\frac{u}{\bar{Z}}=\frac{U_{0}\angle \varphi _{u}}{(R+(Z_{L}-Z_{C}))i}=\frac{100\sqrt{2}\angle 0}{(40+40i)}\) ( Phép CHIA hai số phức)

Nhập 100\(\sqrt{2}\) \(\triangleright\) SHIFT (-) 0 : ( 40 + 40  ENG i ) = Hiển thị: 2,5\(\angle\)-45

 Vậy : Biểu thức tức thời cường độ dòng điện qua mạch là:

i = 2,5cos(100πt -π/4) (A).

 Chọn B

Ví dụ 4: Một đoạn mạch điện gồm điện trở R = 50Ω mắc nối tiếp với cuộn thuần cảm L = 0,5/π (H). Đặt vào hai đầu đoạn mạch một điện áp xoay chiều u = 100\(\sqrt{2}\)cos(100πt- π/4) (V). Biểu thức của cường độ dòng điện qua đoạn mạch là:


A. i = 2cos(100πt- π/2)(A). B. i = 2\(\sqrt{2}\)cos(100πt- π/4) (A).

C. i = 2\(\sqrt{2}\)cos100πt (A). D. i = 2cos100πt (A).

Giải:  \(Z_{L}=\omega L=100\pi .\frac{0,5}{\pi }=50\Omega\) Và ZL-ZC =50Ω - 0 = 50Ω

-Với máy FX570ES : Bấm MODE 2 màn hình xuất hiện: CMPLX.

 -Bấm SHIFT MODE ‚ 3 2 : Cài đặt dạng toạ độ cực:( r\(\angle\)\(\Theta\) )

 -Chọn đơn vị đo góc là độ (D), bấm: SHIFT MODE 3  màn hình hiển thị D

Ta có : \(i=\frac{u}{\bar{Z}}=\frac{U_{0}\angle \varphi _{u}}{(R+Z_{L}i}=\frac{100\sqrt{2}\angle -45}{(50+50i)}\) ( Phép CHIA hai số phức)

Nhập 100\(\sqrt{2}\) \(\triangleright\) SHIFT (-) - 45 : ( 50 + 50  ENG i ) = Hiển thị: 2\(\angle\)- 90

 Vậy : Biểu thức tức thời cường độ dòng điện qua mạch là:

i = 2cos( 100πt - π/2) (A). 

Chọn A

Ví dụ 5(ĐH 2009):  Khi đặt hiệu điện thế không đổi 30V vào hai đầu đoạn mạch gồm điện trở thuần mắc nối tiếp với cuộn cảm thuần có độ tự cảm L = 1/4π (H) thì cường độ dòng điện 1 chiều là 1A. Nếu đặt vào hai đầu đoạn mạch này điện áp u =150\(\sqrt{2}\)cos120π(V) thì biểu thức cường độ dòng điện trong mạch là:


  A.\(i=5\sqrt{2}cos(120\pi t-\frac{\pi }{4})(A)\) B. \(i=5cos(120\pi t+\frac{\pi }{4})(A)\)

C.\(i=5\sqrt{2}cos(120\pi t+\frac{\pi }{4})(A)\) D.\(i=5cos(120\pi t-\frac{\pi }{4})(A)\)

Giải: Khi đặt hiệu điện thế không đổi (hiệu điện thế 1 chiều) thì đoạn mạch chỉ còn có R: R = U/I =30Ω

\(Z_{L}=\omega L=120\pi .\frac{1}{4\pi }=30\Omega;i=\frac{u}{\bar{Z}}=\frac{150\sqrt{2}\angle 0}{(30+30i)}\) ( Phép CHIA hai số phức)

 a.Với máy FX570ES :

-Bấm MODE 2 màn hình xuất hiện: CMPLX.

-Bấm SHIFT MODE ‚ 3 2 : Cài đặt dạng toạ độ cực:( r\(\angle\)\(\Theta\) )

-Chọn đơn vị góc là độ (D), bấm: SHIFT MODE 3  màn hình hiển thị D

Nhập máy: 150\(\sqrt{2}\) \(\triangleright\) : ( 30 + 30  ENG i ) = Hiển thị: 5\(\angle\)- 45

 Vậy: Biểu thức tức thời cường độ dòng điện qua mạch là: 

i = 5cos( 120πt - π/4) (A). 

Chọn D

b.Với máy FX570ES : -Bấm MODE 2 màn hình xuất hiện: CMPLX.

Xem thêm: Lời Bài Hát Sai Lầm Của Anh Từng Oán Trách Em Rất Nhiều Sao Ngày Ấy

-Chọn đơn vị góc là độ (R), bấm: SHIFT MODE 4  màn hình hiển thị R

Nhập máy: 150 \(\sqrt{2}\) \(\triangleright\) : ( 30 + 30  ENG i ) = Hiển thị dạng phức: 3.535533..-3.535533…i


Bấm SHIFT 2 3 : Hiển thị: 5\(\angle\) - \(\frac{\pi }{4}\)

 Vậy: Biểu thức tức thời cường độ dòng điện qua mạch là:

 i = 5cos( 120πt - π/4) (A). 

Chọn D

Tải về

Luyện Bài tập trắc nghiệm môn Vật lý lớp 12 - Xem ngay