Hướng dẫn giải Bài §7. Phép cộng phân số, chương III – Phân số, sách giáo khoa toán 6 tập hai. Nội dung bài giải bài 42 43 44 45 trang 26 sgk toán 6 tập 2 bao gồm tổng hợp công thức, lý thuyết, phương pháp giải bài tập phần số học có trong SGK toán để giúp các em học sinh học tốt môn toán lớp 6.

Bạn đang xem: Toán lớp 6 tập 2 trang 26 bài 42

Lý thuyết

Bài trước chúng ta đã tìm hiểu so sánh hai phân số. Bài tiếp theo chúng ta sẽ học về bài §7 Phép cộng phân số.

1. Quy tắc

Muốn cộng hai phân số cùng mẫu, ta cộng các tử và giữ nguyên mẫu.

\(\frac{a}{m} + \frac{b}{m} = \frac{{a + b}}{m}\)

Muốn cộng hai phân số không cùng mẫu, ta viết chúng dưới dạng hai phân số có cùng một mẫu rồi cộng các tử, giữ nguyên mẫu chung.

\(\frac{a}{m} + \frac{b}{n} = \frac{{an}}{{m.n}} + \frac{{bm}}{{m.n}} = \frac{{a.n + b.m}}{{m.n}}\)

2. Tính chất

Giao hoán: \(\frac{a}{b} + \frac{c}{d} = \frac{c}{d} + \frac{a}{b}\)

Kết hợp: \(\left( {\frac{a}{b} + \frac{c}{d}} \right) + \frac{e}{f} = \frac{a}{b} + \left( {\frac{c}{d} + \frac{e}{f}} \right)\)

Tổng phân số với số 0: \(\frac{a}{b} + 0 = 0 + \frac{a}{b} = \frac{a}{b}\)

3. Ví dụ minh họa

Trước khi đi vào giải bài 42 43 44 45 trang 26 sgk toán 6 tập 2, chúng ta hãy tìm hiểu các ví dụ điển hình sau đây:

Ví dụ 1: 

a) Viết phân số \(\frac{7}{{15}}\) dưới dạng tổng của hai phân số tối giản có mẫu khác nhau.

b) Viết phân số \(\frac{1}{8}\) dưới dạng tổng của hai phân số dương có tử bằng 1 và mẫu khác nhau.

c) Viết các phân số bằng \(\frac{{15}}{{17}}\) có mẫu là số tự nhiên chẵn có hai chữ số.

Bài giải:

a) Vì 7 = 2 + 5 = 3 + 4 = 1 + 6 nên có nhiều cách viết:

\(\frac{1}{3} + \frac{2}{{15}}\) hoặc \(\frac{1}{5} + \frac{4}{{15}}\) hoặc \(\frac{2}{5} + \frac{1}{{15}}\)

b) \(\frac{1}{8} = \frac{1}{{12}} + \frac{1}{{24}}\) hoặc \(\frac{1}{8} = \frac{1}{{40}} + \frac{1}{{10}}\)

c) \(\frac{{15}}{{17}} = \frac{{15.2}}{{17.2}} = \frac{{15.4}}{{17.4}}\)

Do đó có hai phân số bằng \(\frac{7}{{15}}\) là \(\frac{{30}}{{34}}\) và \(\frac{{60}}{{68}}\).

Ví dụ 2: 

Chứng tỏ:

\(\frac{1}{{1001}} + \frac{1}{{1002}} + \frac{1}{{1003}} + …. + \frac{1}{{1250}} > \frac{1}{5}\)

Bài giải:

\(\begin{array}{l}\frac{1}{{1001}} > \frac{1}{{1250}}\\\frac{1}{{1002}} > \frac{1}{{1250}}\\……………\\\frac{1}{{1249}} > \frac{1}{{1250}}\end{array}\)

Vậy \(\frac{1}{{1001}} + \frac{1}{{1002}} + \frac{1}{{1003}} + …. + \frac{1}{{1250}} > \frac{1}{{1250}} + \frac{1}{{1250}} + …. + \frac{1}{{1250}} = \frac{{250}}{{1250}} = \frac{1}{5}\)

Do đó: \(\frac{1}{{1001}} + \frac{1}{{1002}} + \frac{1}{{1003}} + …. + \frac{1}{{1250}} > \frac{1}{5}\)

Ví dụ 3: 

Cho \(a,{\rm{ }}b,{\rm{ }}c \in \,{\mathbb{N}^*}\) và \(A = \frac{a}{{a + b}} + \frac{b}{{b + c}} + \frac{c}{{a + c}}.\) Chứng tỏ 1

Bài giải:

Vì \(\frac{a}{{a + b}} > \frac{a}{{a + b + c}};\frac{b}{{b + c}} > \frac{b}{{a + b + c}};\frac{c}{{a + c}} > \frac{c}{{a + b + c}}\)

Vậy \(A > \frac{a}{{a + b + c}} + \frac{b}{{a + b + c}} + \frac{c}{{a + b + c}} = \frac{{a + b + c}}{{a + b + c}} = 1 \Rightarrow A > 1\)

Xét \(B = \frac{b}{{a + b}} + \frac{c}{{b + c}} + \frac{a}{{a + c}},\) tương tự trên ta suy ra B > 1.

Ta có \(A{\rm{ }} + {\rm{ }}B{\rm{ }} = \left( {\frac{a}{{a + b}} + \frac{b}{{a + b}}} \right) + \left( {\frac{b}{{b + c}} + \frac{c}{{b + c}}} \right) + \left( {\frac{c}{{a + c}} + \frac{a}{{a + c}}} \right) = 3\)

Vì B > 1 nên A

Ví dụ 4: 

Chứng tỏ:

\(\frac{1}{{10}} + \frac{1}{{15}} + \frac{1}{{21}} + \frac{1}{{28}} + \frac{1}{{36}} + \frac{1}{{45}} = \frac{3}{{10}}.\)

Bài giải:

\(\begin{array}{l}\frac{1}{{10}} = \frac{2}{{10}} = 2\left( {\frac{1}{4} – \frac{1}{5}} \right);\\\frac{1}{{15}} = \frac{2}{{30}} = 2\left( {\frac{1}{5} – \frac{1}{6}} \right);\\\frac{1}{{21}} = \frac{2}{{42}} = 2\left( {\frac{1}{6} – \frac{1}{7}} \right).\end{array}\)

Do đó:

\(\frac{1}{{10}} + \frac{1}{{15}} + \frac{1}{{21}} + \frac{1}{{28}} + \frac{1}{{36}} + \frac{1}{{45}} = 2\left( {\frac{1}{4} – \frac{1}{5} + \frac{1}{5} – \frac{1}{6} + \frac{1}{6} – \frac{1}{7} + … + \frac{1}{9} – \frac{1}{{10}}} \right)\)

\( = 2\left( {\frac{1}{4} – \frac{1}{{10}}} \right) = 2\left( {\frac{5}{{20}} – \frac{2}{{20}}} \right) = 2.\frac{3}{{20}} = \frac{3}{{10}}\)

Ví dụ 5: 

Tính \(A = \frac{{11}}{{1.3}} + \frac{{11}}{{3.5}} + … + \frac{{11}}{{97.99}}\)

Bài giải:

\(A = \frac{{11}}{2}\left( {\frac{2}{{1.3}} + \frac{2}{{3.5}} + …. + \frac{2}{{97.99}}} \right) = \frac{{11}}{2}\left< {\left( {\frac{1}{1} – \frac{1}{3}} \right) + \left( {\frac{1}{3} – \frac{1}{5}} \right) + … + \left( {\frac{1}{{91}} – \frac{1}{{99}}} \right)} \right>\)

\(A = \frac{{11}}{2}\left( {1 – \frac{1}{{99}}} \right) = \frac{{11}}{2}.\frac{{98}}{{99}} = \frac{{49}}{9}.\)

Ví dụ 6: 

Tìm x biết:

\(\frac{1}{3} + \frac{1}{6} + \frac{1}{{10}} + … + \frac{2}{{x(x + 1)}} = \frac{{1999}}{{2001}}\)

Bài giải:

\(\frac{1}{3} + \frac{1}{6} + \frac{1}{{10}} + … + \frac{2}{{x(x + 1)}} = \frac{2}{{2.3}} + \frac{2}{{3.4}} + \frac{2}{{4.5}} + \frac{2}{{x(x + 1)}} = 2\left( {\frac{1}{2} – \frac{1}{3} + \frac{1}{3} – \frac{1}{4} + … + \frac{1}{x} – \frac{1}{{x + 1}}} \right)\)

Dưới đây là giải bài 42 43 44 45 trang 26 sgk toán 6 tập 2. Các bạn hãy đọc kỹ đầu bài trước khi giải nhé!

Bài tập

hijadobravoda.com giới thiệu với các bạn đầy đủ phương pháp giải bài tập phần số học 6 kèm bài giải chi tiết bài 42 43 44 45 trang 26 sgk toán 6 tập 2 của bài §7 Phép cộng phân số trong chương III – Phân số cho các bạn tham khảo. Nội dung chi tiết bài giải từng bài tập các bạn xem dưới đây:

*
Giải bài 42 43 44 45 trang 26 sgk toán 6 tập 2

1. Giải bài 42 trang 26 sgk Toán 6 tập 2

Cộng các phân số (rút gọn kết quả nếu có thể)?

a) \(\frac{7}{-25}+\frac{-8}{25}\) ; b) \(\frac{1}{6}+\frac{-5}{6}\) ;

c) \(\frac{6}{13}+\frac{-14}{39}\) ; c) \(\frac{4}{5}+\frac{4}{-18}\) ;

Bài giải:

a) \(\frac{-3}{5}\) ;

b) \(\frac{-2}{3}\) ;

c) \(\frac{4}{39}\) ;

d) \(\frac{26}{45}\) .

2. Giải bài 43 trang 26 sgk Toán 6 tập 2

Tính các tổng dưới đây sau khi đã rút gọn các phân số:

a) \(\frac{7}{21}+\frac{9}{-36}\) ; b) \(\frac{-12}{18}+\frac{-21}{35}\) ;

c) \(\frac{-3}{21}+\frac{6}{42}\) ; d) \(\frac{-18}{24}+\frac{15}{21}\) .

Bài giải:

\(\eqalign{& a){7 \over {21}} + {9 \over { – 36}} = {1 \over 3} – {1 \over 4} = {4 \over {12}} – {3 \over {12}} = {1 \over {12}}. \cr& b){{ – 12} \over {18}} + {{ – 21} \over {35}} = {{ – 2} \over 3} + {{ – 3} \over 5} = {{ – 10} \over {15}} + {{ – 9} \over {15}} = {{ – 19} \over {15}}. \cr& c){{ – 3} \over {21}} + {6 \over {42}} = {{ – 1} \over 7} + {1 \over 7} = 0. \cr& d){{ – 18} \over {24}} + {{15} \over {21}} = {{ – 3} \over 4} + {5 \over 7} = {{ – 21} \over {28}} + {{20} \over {28}} = {{ – 1} \over {28}}. \cr} \)

3. Giải bài 44 trang 26 sgk Toán 6 tập 2

Điền dấu thích hợp (, = ) vào ô vuông.

*
Giải bài 44 trang 26 sgk toán 6 tập 2

Bài giải:

Thực hiện phép cộng rồi so sánh kết quả với phân số còn lại.

a) \(\frac{-4}{7}+\frac{3}{-7}=-1\)

b) \(\frac{-15}{22}+\frac{-3}{22}\frac{2}{3}+\frac{-1}{5}\) ; d) \(\frac{1}{6}+\frac{-3}{4}

4. Giải bài 45 trang 26 sgk Toán 6 tập 2

Tìm x, biết:

a) \(x=\frac{-1}{2}+\frac{3}{4};\)

b) \(\frac{x}{5}=\frac{5}{6}+\frac{-19}{30}\).

Bài giải:

Thực hiện các phép cộng rồi tìm x.

Xem thêm: Thất Nghiệp Chuyển Sinh Sang Thế Giới Khác Chap 1, Thất Nghiệp Chuyển Sinh

a) \(x=\frac{1}{4};\)

b) x = 1.

Bài trước:

Bài tiếp theo:

Chúc các bạn làm bài tốt cùng giải bài tập sgk toán lớp 6 với giải bài 42 43 44 45 trang 26 sgk toán 6 tập 2!